Publications
39. Molecular mechanism of contactin 2 homophilic interaction. Fan S, Liu J, Chofflet N, Bailey AO, Russell WK, Zhang Z, Takahashi H, Ren G, Rudenko G. Structure. 2024 Jun 28:S0969-2126(24)00222-3. doi: 10.1016/j.str.2024.06.004.
38. Structural and functional characterization of the IgSF21-neurexin2α complex and its related signaling pathways in the regulation of inhibitory synapse organization. Chofflet N, Naito Y, Pastore AJ, Padmanabhan N, Nguyen PT, Poitras C, Feller B, Yi N, Van Prooijen J, Khaled H, Coulombe B, Clapcote SJ, Bourgault S, Siddiqui TJ, Rudenko G, Takahashi H. Front Mol Neurosci. 2024 Mar 20;17:1371145. doi: 10.3389/fnmol.2024.1371145.
37.
Designer molecules of the synaptic organizer MDGA1 reveal 3D conformational control of biological function. Lee H, Chofflet N, Liu J, Fan S, Lu Z, Resua Rojas M, Penndorf P, Bailey AO, Russell WK, Machius M, Ren G, Takahashi H, Rudenko G. J Biol Chem. 2023, Apr;299(4):104586. doi: 10.1016/j.jbc.2023.104586.
Highlight: selected as JBC's "Editors' Picks as a paper providing an exceptional contribution to the field. Zhou Q. Organizing the synaptic junctions. J Biol Chem. 2023 May; 299(5):104716. doi: 10.1016/j.jbc.2023.104716.
36. Chemically targeting the redox switch in AP1 transcription factor ΔFOSB. Kumar A, Aglyamova G, Yim YY, Bailey AO, Lynch HM, Powell RT, Nguyen ND, Rosenthal Z, Zhao WN, Li Y, Chen J, Fan S, Lee H, Russell WK, Stephan C, Robison AJ, Haggarty SJ, Nestler EJ, Zhou J, Machius M, Rudenko G. Nucleic Acids Res.. 2022, Aug 30; 50(16):9548–67. doi: 10.1093/nar/gkac710.
35.
Interplay between hevin, SPARC, and MDGAs: modulators of neurexin-neuroligin transsynaptic bridges. Fan S, Gangwar SP,
Machius M, Rudenko G. Structure. 2021 Jul 1;29(7):664-678.e6. doi: 10.1016/j.str.2021.01.003.
Highlight: Juan J. Ramirez, Dhanesh Sivadasan Bindu, Cagla Eroglu.
Building and destroying synaptic bridges: How do Hevin/Sparcl1, SPARC, and MDGAs modify trans-synaptic neurexin-neuroligin interactions? Structure, 2021, Jul 1; 29(7):635-637.
34. Highly Conserved Molecular Features in IgLONs Contrast Their Distinct Structural and Biological Outcomes. Venkannagari H, Kasper JM, Misra A, Rush SA, Fan S, Lee H, Sun H, Seshadrinathan S, Machius M, Hommel JD, Rudenko G. J Mol Biol. 432(19):5287-5303 (2020) doi: 10.1016/j.jmb.2020.07.014.
33. Discovery of phenanthridine analogues as novel chemical probes disrupting the binding of DNA to ΔFosB homodimers and ΔFosB/JunD heterodimers. Li Y, Liu Z, Aglyamova G, Chen J, Chen H, Bhandari M, White MA, Rudenko G, Zhou J. Bioorg Med Chem Lett. 30(16):127300 (2020). doi: 10.1016/j.bmcl.2020.127300.
32. Self-assembly of the bZIP transcription factor ΔFosB. Yin Z, Venkannagaria H, Lynch H, Aglyamova G, Bhandari M, Machius M, Nestler EJ, Robison AJ, Rudenko G. Current Research in Structural Biology. 2:1-13 (2020)
31. Editorial overview: Synapses: bridging the gap between their structure and function. Rudenko G, Takahashi, H. Curr Opin Struct Biol.54:iii-vii. (2019)
30. Neurexins - versatile molecular platforms in the synaptic cleft. Rudenko G. Curr Opin Struct Biol. 54:112-121 (2019)
29. Structural Plasticity of Neurexin 1α: Implications for its Role as Synaptic Organizer. Liu J, Misra A, Reddy MVVVS, White MA, Ren G, Rudenko G. J Mol Biol. 430(21):4325-4343 (2018)
28. Activator Protein-1: redox switch controlling structure and DNA-binding. Yin Z, Machius M, Nestler EJ, and Rudenko G. Nucleic Acids Research Sept. 7 (2017)
27. Molecular Mechanism of MDGA1: Regulation of Neuroligin 2:Neurexin Trans-synaptic Bridges. Gangwar SP, Zhong X, Seshadrinathan S, Chen H, Machius M, and Rudenko G. Neuron Jun. 21 (2017)
26. Molecular and Cellular Mechanisms of Synaptopathies. Ardiles AO, Grabrucker AM, Scholl FG, Rudenko G, and Borsello T. Neural Plasticity Apr. 30 (2017)
25. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity. Rudenko G. Neural Plasticity Jan. 31 (2017)
24. Molecular Architecture of Contactin-associated Protein-like 2 (CNTNAP2) and its Interaction with Contactin 2 (CNTN2). Lu Z, Reddy MV, Liu J, Kalichava A, Liu J, Zhang L, Chen F, Wang Y, Holthauzen LM, White MA, Seshadrinathan S, Zhong X, Ren G, and Rudenko G. The Journal of Biological Chemistry Sept. 12 (2016)
23. Functional analysis of rare variants found in schizophrenia implicates a critical role for GIT1-PAK3 signaling in neuroplasticity. Kim MJ, Biag J, Fass DM, Lewis MC, Zhang Q, Fleishman M, Gangwar SP, Machius M, Fromer M, Purcell SM, McCarroll SA, Rudenko G, Premont RT, Scolnick EM, and Haggarty SJ. Mol Psychiatry July 26 (2016)
22. Data publication with the structural biology data grid supports live analysis. Meyer PA, Socias S, Key J, Ransey E, Tjon EC, Buschiazzo A, Lei M, Botka C, Withrow J, Neau D, Rajashankar K, Anderson KS, Baxter RH, Blacklow SC, Boggon TJ, Bonvin AM, Borek D, Brett TJ, Caflisch A, Chang CI, Chazin WJ, Corbett KD, Cosgrove MS, Crosson S, Dhe-Paganon S, Di Cera E, Drennan CL, Eck MJ, Eichman BF, Fan QR, Ferré-D'Amaré AR, Christopher Fromme J, Garcia KC, Gaudet R, Gong P, Harrison SC, Heldwein EE, Jia Z, Keenan RJ, Kruse AC, Kvansakul M, McLellan JS, Modis Y, Nam Y, Otwinowski Z, Pai EF, Pereira PJ, Petosa C, Raman CS, Rapoport TA, Roll-Mecak A, Rosen MK, Rudenko G, Schlessinger J, Schwartz TU, Shamoo Y, Sondermann H, Tao YJ, Tolia NH, Tsodikov OV, Westover KD, Wu H, Foster I, Fraser JS, Maia FR, Gonen T, Kirchhausen T, Diederichs K, Crosas M, and Sliz P. Nat Commun. Mar. 07 (2016)
21. Calsyntenin3: Molecular Architecture and Interaction with Neurexin 1alpha. Lu Z, Wang Y, Chen F, Tong H, Reddy MV, Luo L, Seshadrinathan S, Zhang L, Holthauzen LM, Craig AM, Ren G, and Rudenko G. The Journal of Biological Chemistry Oct. 28 (2014)
20. Threonine 149 Phosphorylation Enhances ΔFosB Transcriptional Activity to Control Psychomotor Responses to Cocaine.Cates HM, Thibault M, Pfau M, Heller E, Eagle A, Gajewski P, Bagot R, Colangelo C, Abbott T, Rudenko G, Neve R, Nestler EJ, and Robison AJ. The Journal of Neuroscience 34(34):11461-11469 (2014)
19.
The specific α-neurexin interactor calsyntenin-3 promotes excitatory and inhibitory synapse development. Pettem KL, Yokomaku D, Luo L, Linhoff MW, Prasad T, Connor SA, Siddiqui TJ, Kawabe H, Chen F, Zhang L, Rudenko G, Wang YT, Brose N, Craig AM. Neuron 80(1):113-28 (2013).
Highlight: Featured article by Neuron
18. Small molecule screening identifies regulators of the transcription factor ΔFosB. Wang Y, Cesena TI, Ohnishi Y, Burger-Caplan R, Lam V, Kirchhoff PD, Larsen SD, Larsen MJ, Nestler EJ, Rudenko G. ACS Chem Neurosci. 3(7):546-56 (2012)
17.
The structure of neurexin 1α reveals features promoting a role as synaptic organizer. Chen F, Venugopal V, Murray B, Rudenko G. Structure 19(6):779-89 (2011).
Highlight: Early Immediate Publication, Featured Article and Cover Highlight by Structure
Highlight: Comment in Structure
19(6):749-750
16. Model of human low-density lipoprotein and bound receptor based on cryoEM. Ren G, Rudenko G, Ludtke SJ, Deisenhofer J, Chiu W, Pownall HJ. Proc Natl Acad Sci U. S. A. 107(3):1059-64 (2010).
15. Mechanism of LDL binding and release probed by structure-based mutagenesis of the LDL receptor. Huang S, Henry L, Ho YK, Pownall HJ, Rudenko G. J Lipid Res. 51(2):297-308 (2010). PubMed PMID:
14.
Regulation of neurexin 1β tertiary structure and ligand binding through alternative splicing. Shen KC, Kuczynska DA, Wu IJ, Murray BH, Sheckler LR, Rudenko G. Structure 16(3):422-31 (2008).
Highlight: Featured article by Structure
13. Dimerization and DNA-binding properties of the transcription factor DeltaFosB. Jorissen HJ, Ulery PG, Henry L, Gourneni S, Nestler EJ, Rudenko G. Biochemistry 46(28):8360-72 (2007).
12. Crystal structure of the second LNS/LG domain from neurexin 1alpha: Ca2+ binding and the effects of alternative splicing. Sheckler LR, Henry L, Sugita S, Südhof TC, Rudenko G. J Biol Chem. 281(32):22896-905 (2006).
11. Regulation of DeltaFosB stability by phosphorylation. Ulery PG, Rudenko G, Nestler EJ. J Neurosci. 26(19):5131-42. (2006).
10. 'MAD'ly phasing the extracellular domain of the LDL receptor: a medium-sized protein, large tungsten clusters and multiple non-isomorphous crystals. Rudenko G, Henry L, Vonrhein C, Bricogne G, Deisenhofer J. Acta Crystallogr D Biol Crystallogr. 59(Pt 11):1978-86 (2003).
9. The low-density lipoprotein receptor: ligands, debates and lore. Rudenko G, Deisenhofer J. Curr Opin Struct Biol. 13(6):683-9.(2003) Review.
8.
Structure of the LDL receptor extracellular domain at endosomal pH. Rudenko
G, Henry L, Henderson K, Ichtchenko K, Brown MS, Goldstein JL, Deisenhofer J. Science . 298(5602):2353-8 (2002).
Highlight: Comment in Science 298(5602):2337-9 (2002)
7. LG/LNS domains: multiple functions - one business end? Rudenko G, Hohenester E, Muller YA. Trends Biochem Sci. 26(6):363-8 (2001) Review.
6. The structure of the ligand-binding domain of neurexin 1β: regulation of LNS domain function by alternative splicing. Rudenko G, Nguyen T, Chelliah Y, Südhof TC, Deisenhofer J. Cell. 99(1):93-101 (1999).
5. The atomic model of the human protective protein/cathepsin A suggests a structural basis for galactosialidosis. Rudenko G, Bonten E, Hol WG, d'Azzo A. Proc Natl Acad Sci U S A. 95(2):621-5. (1998).
4. Structure determination of the human protective protein: twofold averaging reveals the three-dimensional structure of a domain which was entirely absent in the initial model. Rudenko G, Bonten E, d'Azzo A, Hol WG. Acta Crystallogr D Biol Crystallogr. 52(Pt 5):923-36 (1996).
3. Three-dimensional structure of the human 'protective protein': structure of the precursor form suggests a complex activation mechanism. Rudenko G, Bonten E, d'Azzo A, Hol WG. Structure. 3(11):1249-59 (1995).
2. N-glycosylation and deletion mutants of the human MDR1 P-glycoprotein. Schinkel AH, Kemp S, Dollé M, Rudenko G, Wagenaar E. J Biol Chem. 268(10):7474-81 (1993).
1. In search of new lead compounds for trypanosomiasis drug design: a protein structure-based linked-fragment approach. Verlinde CL, Rudenko G, Hol WG. J Comput Aided Mol Des. 6(2):131-47 (1992).