Choi's Research Lab



















  1. Flavivirus enzymes and their inhibitors. Knyazhanskaya E, Morais MC, Choi KH. Enzymes. 2021;49:265-303. doi: 10.1016/bs.enz.2021.07.006.
  2. Structures of flavivirus RNA promoters suggest two binding modes with NS5 polymerase. Lee E, Bujalowski PJ, Teramoto T, Gottipati K, Scott SD, Padmanabhan R, Choi KH. Nat Commun. 2021 May 5;12(1):2530. doi: 10.1038/s41467-021-22846-1.
  3. The Role of the Stem-Loop A RNA Promoter in Flavivirus Replication. Choi KH. Viruses. 2021 Jun 9;13(6):1107. doi: 10.3390/v13061107.
  4. Biochemical and Biophysical Characterization of the dsDNA Packaging Motor from the Lactococcus lactis Bacteriophage Asccphi28. Reyes-Aldrete E, Dill EA, Bussetta C, Szymanski MR, Diemer G, Maindola P, White MA, Bujalowski WM, Choi KH, Morais MC. Viruses. 2020 Dec 23;13(1):15. doi: 10.3390/v13010015.
  5. NMR structure of a vestigial nuclease provides insight into the evolution of functional transitions in viral dsDNA packaging motors. Mahler BP, Bujalowski PJ, Mao H, Dill EA, Jardine PJ, Choi KH, Morais MC. Nucleic Acids Res. 2020 Nov 18;48(20):11737-11749. doi: 10.1093/nar/gkaa874.
  6. Identification of the viral RNA promoter stem loop A (SLA)-binding site on Zika virus polymerase NS5. Bujalowski PJ, Bujalowski W, Choi KH. Sci Rep. 2020 Aug 6;10(1):13306. doi: 10.1038/s41598-020-70094-y.
  7. A cocrystal structure of dengue capsid protein in complex of inhibitor. Xia H, Xie X, Zou J, Noble CG, Russell WK, Holthauzen LMF, Choi KH, White MA, Shi PY. Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17992-18001. doi: 10.1073/pnas.2003056117.
  8. Membrane binding and rearrangement by chikungunya virus capping enzyme nsP1. Gottipati K, Woodson M, Choi KH. Virology. 2020 May;544:31-41. doi: 10.1016/j.virol.2020.02.006.
  9. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. Zhou W, Woodson M, Neupane B, Bai F, Sherman MB, Choi KH, Neelakanta G, Sultana H. PLoS Pathog. 2018 Jan 4;14(1):e1006764. doi: 10.1371/journal.ppat.1006764.
  10. Serotype-specific interactions among functional domains of dengue virus 2 nonstructural proteins (NS) 5 and NS3 are crucial for viral RNA replication. Teramoto T, Balasubramanian A, Choi KH, Padmanabhan R. J Biol Chem. 2017 Jun 9;292(23):9465-9479. doi: 10.1074/jbc.M117.775643.
  11. Interactions between the Dengue Virus Polymerase NS5 and Stem-Loop A. Bujalowski PJ, Bujalowski W, Choi KH. J Virol. 2017 May 12;91(11). pii: e00047-17. doi: 10.1128/JVI.00047-17.
  12. Pestivirus Npro Directly Interacts with Interferon Regulatory Factor 3 Monomer and Dimer. Gottipati K, Holthauzen LM, Ruggli N, Choi KH. J Virol. 2016 Aug 12;90(17):7740-7. doi: 10.1128/JVI.00318-16.
  13. Dengue Virus Nonstructural Protein 5 (NS5) Assembles into a Dimer with a Unique Methyltransferase and Polymerase Interface. Klema VJ, Ye M, Hindupur A, Teramoto T, Gottipati K, Padmanabhan R, Choi KH. PLoS Pathog. 2016 Feb 19;12(2):e1005451. doi: 10.1371/journal.ppat.1005451.
  14. Allosteric inhibitors of Coxsackie virus A24 RNA polymerase. Schein CH, Rowold D, Choi KH. Bioorg Med Chem. 2016 Feb 15;24(4):570-7. doi: 10.1016/j.bmc.2015.12.023.
  15. Flaviviral Replication Complex: Coordination between RNA Synthesis and 51-RNA Capping. Klema VJ, Padmanabhan R, Choi KH. Viruses. 2015 Aug 13;7(8):4640-56. doi: 10.3390/v7082837.
  16. Flavivirus RNA synthesis in vitro. Padmanabhan R, Takhampunya R, Teramoto T, Choi KH. Methods. 2015 Dec;91:20-34. doi: 10.1016/j.ymeth.2015.08.002.
  17. Sequence specificity for uridylylation of the viral peptide linked to the genome (VPg) of enteroviruses. Schein CH, Ye M, Paul AV, Oberste MS, Chapman N, van der Heden van Noort GJ, Filippov DV, Choi KH. Virology. 2015 Oct;484:80-5. doi: 10.1016/j.virol.2015.05.016.
  18. Substitution of NS5 N-terminal domain of dengue virus type 2 RNA with type 4 domain caused impaired replication and emergence of adaptive mutants with enhanced fitness. Teramoto T, Boonyasuppayakorn S, Handley M, Choi KH, Padmanabhan R. J Biol Chem. 289(32):22385-400 (2014).
  19. Use of small-angle X-ray scattering to investigate the structure and function of dengue virus NS3 and NS5. Choi KH, Morais M Methods Mol Biol. 1138:241-52 (2014).
  20. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease Npro. Gottipati K, Acholi S, Ruggli N, Choi KH. Virology 452-453:303-9 (2014).
  21. The structure of classical swine fever virus N(pro): a novel cysteine Autoprotease and zinc-binding protein involved in subversion of type I interferon induction. Gottipati K, Ruggli N, Gerber M, Tratschin JD, Benning M, Bellamy H, Choi KH. PLoS Pathog. 9(10):e1003704 (2013).
  22. Dengue virus nonstructural protein 5 adopts multiple conformations in solution. Bussetta C and Choi KH. Biochemistry 51(30):5921-31 (2012).
  23. Physicochemical property consensus sequences for functional analysis, design of multivalent antigens and targeted antivirals. Schein CH, Bowen DM, Lewis JA, Choi KH, Paul A, van der Heden van Noort GJ, Lu W and Filippov DV. BMC Bioinformatics 13, S9 (2012).
  24. Viral polymerases. Choi KH. Adv. Exp. Med. Biol. 726:267-304 (2012).
  25. Full-length dengue virus RNA-dependent RNA polymerase - RNA/DNA complexes. Szymanski MR, Jezewska MJ, Bujalowski PJ, Bussetta C, Ye M, Choi KH and Bujalowski W. J. Biol. Chem. 286(38):33095-108 (2011).
  26. RNA-dependent RNA polymerases from Flaviviridae. Choi KH and Rossmann MG. Curr. Opin. Struct .Biol. 19(6):746-51 (2009).
  27. Zinc-binding in pestivirus Npro is required for interferon regulatory factor 3 (IRF3) interaction and degradation. Szymanski MR, Fiebach AR, Tratschin J-D, Gut M, Ramanujam VMS, Patel P, Ye M, Keerthi Gottipati, Ruggli N and Choi KH. J. Mol. Biol. 391: 438-49 (2009).
  28. 15. Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3 degrading function of Npro. Ruggli N, Summerfield A. Fiebach AR, Guzylack L, Bauhofer O, Lamm CG, Waltersperger S, Matsuno K, Liu L, Gerber M, Choi KH, Hofmann MA, Sakoda Y and Tratschin JD. J. Virol. 83(2):817-29 (2009).
  29. Insight into DNA and protein transport in double-stranded DNA viruses: The structure of bacteriophage N4. Choi KH, McPartland J, Kaganman I, Bowman VD, Rothman-Denes LB and Rossmann MG. J. Mol. Biol. 378(3): 726-36 (2008).
  30. The structure of bovine viral diarrhea virus RNA-dependent RNA polymerase and its amino-terminal domain. Choi KH, Gallei A, Becher P and Rossmann MG. Structure 14(7):1107-13 (2006).
  31. New superfamily members identified for Schiff-base enzymes based on verification of catalytically essential residues. Choi KH, Lai V, Foster CE, Morris AJ, Tolan DR and Allen KN. Biochemistry 45(28):8546-55 (2006).
  32. Conservation of the capsid structure in tailed dsDNA bacteriophages: the pseudoatomic structure of phi29. Choi KH, Morais MC, Anderson DL and Rossmann MG. Structure 14(11):1723-7 (2006).
  33. Determinants of bacteriophage phi29 head morphology. Morais MC, Choi KH, Koti JS, Chipman PR, Anderson DL and Rossmann MG. Mol. Cell. 18(2): 149-59 (2005).
  34. The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. Choi KH, Groarke JM, Young DC, Kuhn RJ, Smith JL, Pevear DC and Rossmann MG. Proc. Natl. Acad. Sci. USA 101(13):4425-30 (2004).
  35. Presteady-state kinetic evidence for a ring-opening activity in fructose-1,6-(bis)phosphate aldolase. Choi KH and Tolan DR. J. Am. Chem. Soc. 126(11):3402-3 (2004).
  36. Design, expression, and purification of a Flaviviridae polymerase using a high-throughput approach to facilitate crystal structure determination. Choi KH, Groarke JM, Young DC, Pevear DC, Rossmann MG, Kuhn RJ and Smith JL. Protein Science 13 (10):2685-92 (2004).
  37. Spatial clustering of isozyme-specific residues reveals unlikely determinants of isozyme specificity in fructose-1,6-bisphosphate aldolase. Pezza JA, Choi KH, Berardini TZ, Beernink PT, Allen KN and Tolan DR. J. Biol. Chem. 278(19):17307-13 (2003).
  38. Snapshots of catalysis: the structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate. Choi KH, Shi J, Hopkins CE, Tolan DR and Allen KN. Biochemistry 40(46):13868-75 (2001).
  39. Amino-acid sequence and glycan structures of cysteine proteases with proline specificity from ginger rhizome Zingiber officinale. Choi KH and Laursen RA. Eur. J. Biochem. 267(5):1516-26 (2000).
  40. Structure of a fructose-1,6-bis(phosphate) aldolase liganded to its natural substrate in a cleavage-defective mutant at 2.3 A. Choi KH, Mazurkie AS, Morris AJ, Utheza D, Tolan DR and Allen KN. Biochemistry 38(39):12655-64 (1999).
  41. The 2.1 A structure of a cysteine protease with proline specificity from ginger rhizome, Zingiber officinale. Choi KH, Laursen RA and Allen KN. Biochemistry 38(36):11624-33 (1999).
  42. Aldolase A Ins(1,4,5)P3-binding domains as determined by site-directed mutagenesis. Baron CB, Tolan DR, Choi KH and Coburn RF. Biochem J. 341 (Pt 3):805-12 (1999).